ITアシストコム株式会社

  1. Home>
  2. CAEソリューション>
  3. マイクロ波加熱解析コンシェルジュ>
  4. マイクロ波加熱の原理


マイクロ波加熱の原理

誘電体にマイクロ波を照射すると、誘電体は電気双極子なので、マイクロ波の周波数と
同じ速さで、電場の変化に合わせて分極方向を変化させます。

この時、速い速度(高い周波数)で電界の向きを変化させると、双極子は反転する時に
周囲の分子との間で摩擦を受け、電界の変化の速度に追従できなくなります。

その結果、摩擦によるエネルギーが誘電体内部で消費され、それが誘電体内部で熱に
変わります(誘電損失)。

誘電分極   マイクロ波加熱の原理

この誘電発熱が起こる原理を技術的な観点から簡単に説明します。
図1ような簡単な誘電加熱モデルを想定し、交流電圧 [ E ] を印可すると、理想的な
誘電体では、[ I = E× 2πfC ] の電流[I]が流れ、電流[I]の位相は電圧 [ E ] に
対して [ 90 ] 度進みます(図2)。

図1 図2

しかし、実際の誘電体に高周波電流を印可するとロスが発生し、電流は [ δ] だけ
遅れ、図3のように [ θ ] だけしか進むことができず、電圧 [ E ] と同位相の電流[ IR ]
が発生します。
この[ IR ]は、[ P = IR x E]の発熱作用を発生させます。
この時の電流位相の遅れ角[δ]は誘電損失角、[ tanδ = IR/IC = 1/2πfCR ] は
誘電正接 ( タンデルタ/Tanδ ) と呼ばれ、誘電体はそれぞれ固有の値を持っています。
この図3の状態を等価回路で表わすと図4のようになります。

図3 図4

ここで、図1の誘電体の比誘電率[εr]、電極の面積[ S (m2)]、電極の間隔 [ d (m)]、
周波数 [ f (Hz) ]、電圧 [ E (V) ]とすると、この誘電体モデルの静電容量 [ C ] は、
C = (ε0 x εr x S )/d となります。
発熱量 P は [ P = IR x E = E2/R ]、また、 [ tanδ = IR /IC = 1/2πfCR ] が
成り立っていますので、
P = E2/R = E2 x tanδx 2πfC = E2 x tanδx 2πf x (ε0 x εrx S )/d
となり、発熱量 P は、電圧 ( E ) の2乗、tanδ、周波数 [ f ]、誘電体の比誘電率 [εr ]
に比例することがわかります。

ページトップへ